Clinical Practice Guideline

The Diagnosis and Treatment of Heel Pain: A Clinical Practice Guideline–Revision 2010

James L. Thomas, DPM¹, Jeffrey C. Christensen, DPM², Steven R. Kravitz, DPM³, Robert W. Mendicino, DPM⁴, John M. Schuberth, DPM⁵, John V. Vanore, DPM⁶, Lowell Scott Weil Sr, DPM⁷, Howard J. Zlotoff, DPM⁸, Richard Bouché, DPM⁹, Jeffrey Baker, DPM¹⁰

¹ Chair, Clinical Practice Guideline Heel Pain Panel (2001), Morgantown, WV
² Clinical Practice Guideline Heel Pain Panel (2001), Seattle, WA
³ Clinical Practice Guideline Heel Pain Panel (2001), Richboro, PA
⁴ Clinical Practice Guideline Heel Pain Panel (2001), Pittsburgh, PA
⁵ Clinical Practice Guideline Heel Pain Panel (2001), San Francisco, CA
⁶ Clinical Practice Guideline Heel Pain Panel (2001); Gadsden Foot Clinic PC, Gadsden, AL
⁷ Clinical Practice Guideline Heel Pain Panel (2001), Des Plaines, IL
⁸ Clinical Practice Guideline Heel Pain Panel (2001), Mechanicsburg, PA
⁹ 2009 Advisor, Seattle, WA
¹⁰ 2009 EBM contribution, Des Plaines, IL

ARTICLE INFO

Keywords:
- Achilles enthesopathy
- Achilles tendonitis
- calcaneal enthesopathy
- heel neuroma
- heel pain
- heel spur syndrome
- plantar fasciitis
- radiculopathy
- spur
- tarsal tunnel

ABSTRACT

Heel pain, whether plantar or posterior, is predominantly a mechanical pathology although an array of diverse pathologies including neurologic, arthritic, traumatic, neoplastic, infectious, or vascular etiologies must be considered. This clinical practice guideline (CPG) is a revision of the original 2001 document developed by the American College of Foot and Ankle Surgeons (ACFAS) heel pain committee.

© 2010 by the American College of Foot and Ankle Surgeons. All rights reserved.

This clinical practice guideline (CPG) is based on consensus of current clinical practice and review of the clinical literature. The guideline was developed by the CPG Heel Pain Committee of the American College of Foot and Ankle Surgeons (ACFAS). This is the 2010 revision of the original 2001 CPG document published in the Journal of Foot & Ankle Surgery® (Vol. 40, No. 5, pages 329–340). The guideline and references annotate each node of the corresponding pathways.

Financial Disclosure: None reported.

Conflict of Interest: Dr. Weil discloses consultant, advisory, and legal expert roles, as well as research funding, in association with ArthroCare Corporation, Orthometrix Inc., and Electro Medical Systems SA. Dr. Bouché discloses a proprietary interest in United Shockwave Therapies, LLC. Dr. Vanore discloses a consultant/advisory role with BME-TX and Ascension Orthopedics, stock ownership in BME-TX, and receipt of honoraria from BME-TX.

Supplement to: The Journal of Foot & Ankle Surgery®
Address correspondence to: John V. Vanore, DPM, Gadsden Foot Clinic PC, 306 S. 4th Street, Gadsden, AL 35901.
E-mail address: jvanore@bellsouth.net (J.V. Vanore).

1067-2516/$ – see front matter © 2010 by the American College of Foot and Ankle Surgeons. All rights reserved.
doi:10.1053/j.jfas.2010.01.001
Heel Pain (Pathway 1)

The heel is a frequent area of pathology. Pain in the heel may be the result of arthritic, neurologic, traumatic, or other systemic conditions, although the overwhelming cause is mechanical in origin. Careful history and examination are generally indicative of etiology and appropriate diagnostic testing will lead to accurate diagnosis. Treatment is directed toward causative factors.

Plantar Heel Pain [Plantar Fasciitis, Plantar Fasciosis, Heel Spur Syndrome] (Pathway 2)

Plantar heel pain is the most prevalent complaint presenting to foot and ankle specialists and may be seen in upwards of 11% to 15% of adults (1). Plantar heel pain has been referred to in the published literature by many names including heel spur syndrome, which lends some importance to the radiographic presence of an inferior calcaneal spur to the...
clinical symptoms. The term plantar fasciitis has been used for years, likely in an attempt to recognize the actual symptoms occurring along the plantar fascia with or without concomitant presence of a spur. More recently, the term plantar fasciosis has been advocated to de-emphasize the presumed inflammatory component and reiterate the degenerative nature of histologic observations at the calcaneal enthesis (2, 3). Regardless of the exact terminology, the clinician, published literature, and general practice behaviors all describe the same pathology: pain along the proximal plantar fascia and its attachment in the area of the calcaneal tuberosity (Figure 1). The symptoms of plantar heel pain are well known, and diagnosis is relatively straightforward.

The most common cause cited for plantar heel pain is biomechanical stress of the plantar fascia and its enthesis of the calcaneal tuberosity (Figure 2) (4–11). Mechanical overload, whether the result of biomechanical faults, obesity, or work habits, may contribute to the symptoms of heel pain. Discussion of a biomechanical etiology usually involves the windlass mechanism and tension of the plantar fascia in stance and gait (10, 12–21).

Localized nerve entrapment of the medial calcaneal or muscular branch off the lateral plantar nerve may be a contributing factor (22–43). Patients usually present with plantar heel pain upon initiation of weight bearing, either in the morning upon arising or after periods of rest. The pain tends to decrease after a few minutes, and returns as the day proceeds and time on their feet increases. Associated significant findings may include high body mass index (BMI), tightness of the Achilles tendon, pain upon palpation of the inferior heel and plantar fascia, and inappropriate shoe wear (16, 18, 19, 31, 44–46).

Many patients will have attempted self-remedies before seeking medical advice. A careful history is important and should include time(s) of day when pain occurs, current shoe wear, type of activity level both at work and leisure, and history of trauma. Presence of sensory disturbances including radiation of pain is generally indicative of neurologic pathology and is important to exclude. An appropriate physical examination of the lower extremity includes range of motion of the foot and ankle, with special attention to limitation of ankle dorsiflexion, palpation of the heel and plantar fascia, observation of swelling or atrophy of the heel pad, presence of hypesthesias or dyesthesias, assessment of the architectural alignment of the foot, and angle and base of gait evaluation. The quality and height of the plantar fat pad also have been implicated as factors in plantar heel pain (Figure 3) (47–51).

Following physical evaluation, appropriate radiographs (weight-bearing views preferred) may be helpful. Biomechanical interpretation of weight-bearing radiographs may provide insight into architectural faults. An infracalcaneal spur frequently is associated with the symptomatology of plantar fasciitis, although its presence or absence may not necessarily correlate with the patient’s symptoms (52). Radiographic identification of a plantar heel spur usually indicates that the condition has been present for at least 6 to 12 months, whether having been symptomatic or asymptomatic (Figure 2). As a rule, the longer the duration of heel pain symptoms, the longer will be the period to final resolution of the condition (53, 54).

Initial treatment options (see Plantar Heel Pain Treatment Ladder, Figure 4) may include padding and strapping of the foot (45, 55), therapeutic orthotic insoles (56–62), oral anti-inflammatories (63), and a corticosteroid injection localized to the area of maximum tenderness (64–68). Patient-directed treatments appear to be as important as these approaches in resolving symptoms. Such
treatments include regular Achilles and plantar fascia stretching (69, 70), avoidance of flat shoes and barefoot walking, cryotherapy applied directly to the affected part, over-the-counter arch supports and heel cups, and limitation of extended (high-impact) physical activities (64, 71–73). Patients usually have a clinical response within 6 weeks of initiation of treatment. If improvement is noted, the initial therapy program is continued until symptoms are resolved. If little or no improvement is noted, the patient should be referred to a foot and ankle surgeon if not already under this specialist’s care.

Treatment options have been graded according to the levels of evidence and grades of recommendation shown in Table 1 (74). Evidence-based medicine (EBM) conclusions regarding tier 1 therapies are as follows:

- Padding and strapping of the foot [Grade B recommendation] (45, 55)
- Therapeutic orthotic insoles [Grade B recommendation] (56–62)
- Oral inflammatory medication [Grade I recommendation] (63)
- Cortisone injections [Grade B recommendation] (64–68)
- Achilles and plantar fascia stretching [Grade B recommendation] (69, 70)

The second tier of the treatment ladder includes continuation of the initial (tier 1) treatment options with considerations for additional therapies: orthotic devices (75–78), night splints to maintain an extended length of the plantar fascia and gastrosoleus complex during sleep (59, 61, 77, 79–93), repeat corticosteroid injection (2, 16, 45, 64, 65, 76, 79, 87, 94–109) or injection of botulinum toxin (110–117), a course of physical therapy (118), and cast immobilization for 4 to 6 weeks or use of a short-leg walking boot to immobilize or offload the foot during activity (64, 86, 119–121). In patients with a high BMI, a consultation and referral for an appropriate weight-loss program may be considered. Clinical response to this second tier of treatment will usually occur within 2 to 3 months in 85% to 90% of patients (17, 44, 46, 47, 122–128). For those who have shown improvement, continuation of tier 1 and tier 2 therapies should be continued until resolution of symptoms. Following a therapeutic regimen as outlined in Pathway 2, 90% to 95% of patients experience resolution of symptoms within 1 year.
When little or no improvement is noted, other etiologic entities should be considered (130–142). EBM conclusions regarding tier 2 therapies are as follows:

- Prefabricated and custom orthotic devices [Grade B recommendation] (75–78)
- Night splint [Grade B recommendation] (59, 61, 76, 77, 79–93)
- Repeat cortisone injections [Grade B recommendation] (2, 16, 45, 64, 65, 76, 79, 87, 94–109)
- Botulinum toxin [Grade I recommendation] (110–117)
- Physical therapy [Grade I recommendation] (118)
- Cast or boot immobilization [Grade C recommendation] (64, 86, 119–121)

The third tier of treatment continues tier 1 and/or 2 programs with consideration of surgical management. Options at this time may include surgical plantar fasciectomy using a recognized technique. This may entail endoscopic plantar fasciectomy, in-step fasciectomy, or extracorporeal shock wave therapy (ESWT) as an alternative to traditional surgical approaches (64, 171, 179–206) (Figure 5). Current practice favors a minimally invasive approach to plantar fasciectomy versus extensive open surgical exposures (64, 129, 143–154, 156, 157, 163, 168–170, 174, 207–214). In most cases, removal of the plantar heel spur does not seem to add to the success of the outcome in the surgical treatment of plantar heel pain (151, 153, 165, 208).

In some cases, multiple etiologic factors including nerve entrapment may be implicated, necessitating the combination of nerve release and plantar fasciectomy (see Neurologic section, Pathway 4). Radiofrequency coblation of the plantar fascia as well as radiofrequency nerve ablation and cryoprobe have been advocated more recently as an alternative surgical approach to chronic heel pain (41, 42, 215–218).

EBM conclusions regarding tier 3 therapies are as follows:

- ESWT [Grade B recommendation] (64, 171, 179–206)
- Bipolar radiofrequency [Grade C recommendation] (41, 42, 215–218)
Posterior Heel Pain (Pathway 3)

The posterior heel is the second most common location of mechanically induced heel pain. Pathology in this area is categorized as (1) Achilles insertional tendinopathy or enthesopathy, and (2) Haglund’s deformity with or without retrocalcaneal bursitis (Figure 6).

Achilles enthesopathy most commonly presents with an insidious onset and frequently leads to chronic posterior heel pain and swelling (219–221). Pain is aggravated by increased activity (eg, walking, running) and increased pressure caused by the shoe’s heel counter. A palpable prominence may be appreciated both medially and laterally to the insertion of the Achilles tendon. On physical examination, tenderness can be central or more globally located posteriorly. Other proximal pathologies of the Achilles tendon must be ruled out (222). Achilles-related tendinopathy and rupture have also been related to fluoroquinolone use (223–247). In addition, symptoms associated with retrocalcaneal bursitis may occur. Radiographic findings commonly show insertional proliferative spurring and/or erosion or intratendinous calcifications (Figure 6).

Initial treatment focuses on reduction of pressure to the area (eg, open-back shoes); reduction of tensile stress on the tendon Achilles with heel lifts, orthotic devices, or rocker sole shoes; topical anti-inflammatory agents; and various physical therapy modalities including stretching. Primary treatment with immobilization may be considered in particularly acute cases, although this is more commonly used if the previously described treatments are unsuccessful. Local corticosteroid injections in the Achilles tendon are not recommended (97, 248–251), although various transdermal modalities including iontophoresis may be considered. If retrocalcaneal bursitis is present, injection therapy may be used with caution to avoid intratendinous injection. Postinjection reduction of activity and/or immobilization is recommended.

EBM conclusions regarding initial or nonsurgical treatment of Achilles enthesopathy and tendinopathy reflect a Level IV level of evidence.

Resistant cases should be referred to a foot and ankle surgeon. Surgery may be indicated—eg, resection of the posterior superior...
aspect of calcaneus, enthesophytes of the Achilles along with pathologic soft tissue (inflamed bursa, diseased tendon), or more proximal tendon debridement (222, 252–263). Various degrees of detachment with subsequent reattachment of the Achilles tendon may be needed to ensure complete resection of the spur (264). Patients should also be evaluated for equinus and need for Achilles lengthening or gastrocnemius recession (265). ESWT is another approach that has been proposed for Achilles enthesopathy and tendinopathy (266–269). To stimulate neovascular genesis, radiofrequency coblation can also be applied to the Achilles tendon in the treatment of the tendinopathy often associated with retrocalcaneal heel pain (270–272).

EBM conclusions regarding surgical treatment of Achilles enthesopathy and tendinopathy are as follows:

- Resection of the posterior superior aspect of calcaneus, enthesophytes of the Achilles along with pathologic soft tissue (inflamed bursa, diseased tendon), or more proximal tendon debridement [Grade B recommendation] (222, 252–263)
- Achilles lengthening or gastrocnemius recession [Grade I recommendation] (265)
- ESWT [Grade B recommendation] (266–269)
- Radiofrequency coblation [Grade I recommendation] (279–272)
Pathway 3

POSTERIOR HEEL PAIN
INSERTIONAL ACHILLES TENDONOPATHY - ENTHESOPATHY / HAGLUND'S - BURSITIS

Initial Patient Evaluation

Significant History
- Chronic posterior heel pain
- Insidious onset
- Symptoms aggravated by shoes
- Symptoms relieved with barefoot or backless shoe

Significant Findings
- Tenderness at Achilles insertion
- +/- central subcutaneous bony prominence
- +/- local inflammation

Radiographs
- Erosion or proliferative spurting at Achilles insertion
- Intratendinous calcification adjacent to insertion

Insertional

Initial Treatment Options
- Patient-directed treatment options
 - Heel lifts
 - Open-back shoes
 - Cryotherapy/topical analgesics
 - Limit activities
- Oral antiinflammatories
- Orthoses
- Physical therapy
- Weight loss

Bursitis / Haglund’s

Initial Treatment Options
- Patient-directed treatment options
 - Heel lifts
 - Open-back shoes
 - Cryotherapy/topical analgesics
- Orthoses
- Accommodative padding
- Oral antiinflammatories
- Physical therapy
- Weight loss

Surgery
- Resection of insertional spurring
- Tendon debridement

Consider Alternative Etiologies – Pathway 4
- Neurologic heel pain
- Arthritis
- Tumor
- Other

Continue Therapy Until Symptoms Resolve

Unsatisfactory Improvement

Satisfactory Improvement

Haglund’s deformity with or without retrocalcaneal bursitis may occur in both sexes and at any age, although 3 studies have shown that females aged 20 to 30 years are most commonly affected (222, 273–278). Symptoms include pain and inflammation that is significantly aggravated by shoe wear. Pain may be relieved with barefoot walking or use of open-heel shoes. On physical examination, there is tenderness lateral to the Achilles tendon, usually associated with a palpable posterior lateral prominence. Radiographs commonly demonstrate prominence of the posterior superior surface of the calcaneus. The degree of prominence may be quantified by documenting specific radiographic angles (221, 273, 274, 279–281).

Initial treatment—eg, open-back shoes, nonsteroidal anti-inflammatory drug (NSAID) therapy, injection therapy (with care taken not to inject the Achilles tendon)—is directed toward eliminating pressure and relieving inflammation to the symptomatic area. Physical therapy also may be helpful, particularly in recalcitrant cases.

If symptoms are not improved after an adequate period of nonoperative treatment, surgery may be considered. Resection of the prominent posterior superior aspect of the calcaneus and inflamed bursa is the indicated surgical procedure (Figure 7) (221, 273, 282–290). Although not commonly performed, calcaneal osteotomy may also be considered to correct abnormal calcaneal alignment (eg, calcaneal varus) (291–294).

EBM conclusions regarding initial or nonsurgical treatment of Haglund’s deformity and retrocalcaneal bursitis are as follows:

- Open resection of the prominent posterior superior aspect of the calcaneus and inflamed bursa [Grade B recommendation] (221, 273, 282–290)
- Endoscopic calcaneoplasty [Grade I recommendation] (289, 295, 296)
- Calcaneal osteotomy [Grade C recommendation] (291–294)

Additional Etiologies of Heel Pain (Pathway 4)

Neurologic Heel Pain (Pathway 4)

Neurologic heel pain is defined as pain in the heel as a result of an entrapment or irritation of one or more of the nerves that innervate this region. Symptoms may arise in patients initially diagnosed with plantar fasciitis, and careful assessment may yield neuropathologically mediated pathology (32, 297, 298). Patients with a history of previous heel surgery or trauma should be highly suspect for neurologic heel pain (299, 300). The nerves or nerve branches (Figure 8) specifically considered are as follows:

- Posterior tibial (tarsal tunnel syndrome) (24, 301)
- Medial calcaneal (heel neuroma) (28–30, 33, 40–42, 299, 302, 303)
- Medial plantar (26)
- Lateral plantar, including branch to abductor digiti minimi (22, 27, 31, 39, 304–306)
- Sural, including lateral calcaneal (307, 308)

Neurologic pain in the heel or loss of sensation in the foot and/or heel can also be attributable to more proximal nerve impingement syndromes (26, 309). Patients describing pain that originates in the low back and radiates down the leg and into the foot must be assessed for radiculopathy secondary to proximal nerve root pathology. Published reports have described the double-crush syndrome, in which concomitant proximal and distal nerve entrapments may occur simultaneously (26, 310–313).

If neurologic heel pain is suspected, with presence of sensory disturbances, radiating heel pain, and other symptoms, appropriate referral for diagnostic studies and/or assessment by a specialist is indicated.

Fig. 6. Posterior heel pain is generally associated with (A) a posterior superior calcaneal bony prominence or Haglund’s deformity with or without associated bursitis, which may develop (B) retrocalcaneal or retroAchilles. (C) Insertional pathology of the Achilles is common with insertional calcification and (D) at times very exuberant proliferative changes.
should be considered (26, 34, 297, 301, 303). Diagnostic studies may include electromyography (EMG), nerve conduction velocity (NCV) test, magnetic resonance imaging (MRI) (143, 300, 301), and pressure-specified sensory device (PSSD) test (32).

The exact prevalence of heel pain secondary to neurologic causes in the general population is unknown (30, 38, 314, 315). Obesity, venous insufficiency, trauma, and space-occupying lesions may be causative factors of nerve compression (26, 316). Most causes of neurologic heel pain are unilateral. However, bilateral cases of entrapment neuropathy causing symptoms have been reported (317). In suspected neurologic heel pain, especially in bilateral presentations, an underlying systemic disease (eg, neuropathies secondary to diabetes, vitamin deficiency, alcoholism) must be ruled out (318–327).

After consultation reports and diagnostic studies are reviewed, an accurate diagnosis and treatment protocol can be developed. The foot and ankle surgeon may manage local conditions, whereas referral to appropriate specialists may be required if the symptoms are found to originate from more proximal or lumbosacral pathology. In some instances, a combination of pathologies may occur and surgical management will require intervention at both the area of nerve entrapment and the plantar fascia (328–330).

EBM conclusions are as follows: intervention at both the area of nerve entrapment and the plantar fascia [Grade B recommendation].

Arthritides in Heel Pain (Pathway 4)

Most cases of heel pain encountered in clinical practice are likely to have a biomechanical etiology and respond to recommended therapy. In the process of taking a history and conducting a physical examination, the clinician should consider that various systemic arthritides are also capable of presentation as heel pain (Figure 9). These include the seronegative arthritides, psoriatic arthritis, Reiter’s disease, diffuse idiopathic skeletal hyperostosis (DISH), rheumatoid arthritis, fibromyalgia, and gout (45, 130, 134, 135, 142, 158, 327, 331–411).

Patients with arthritides and heel pain may have other joint symptoms and should be questioned regarding concomitant arthralgias. This, in conjunction with careful radiographic evaluation and laboratory testing, may assist in determining the correct diagnosis and proper treatment for these unresponsive patients. Occasionally, scintigraphy may be useful in the diagnosis process because a pattern of joint involvement will be evidenced (412–417). Radiographs of the heel may show erosions or proliferative changes specific to one of these diseases (Figure 9). Rheumatologic consultation may be useful in determining the diagnosis and treatment.

Traumatic Heel Pain (Pathway 4)

Acute trauma to the calcaneus is the most common osseous cause of heel pain. In nearly all cases, the mechanism of injury is a fall from
a height onto the heel. Intra-articular fractures involving the subtalar joint result in diffuse pain in the hindfoot that is poorly localized to the heel itself. In less severe injuries, more focal symptoms are found that correspond to the anatomic area of the fracture. These include isolated injuries to the sustentaculum tali or the plantar calcaneal tubercles, avulsion of the posterior aspect of the tuber, or even fracture of the inferior calcaneal spur (418). Diagnosis is made by a history of trauma, focal pain upon palpation, and radiographic confirmation of the fracture. Treatment may be surgical, although many relatively minor fractures often may occur in older or high-risk individuals for whom nonsurgical management may be the most judicious course. In cases where the fracture fragments are small, nonarticular, or minimally displaced, treatment typically consists of simple immobilization.

Stress fractures of the calcaneus occur as a consequence of repetitive load to the heel (394, 402). The most common site of stress fracture is immediately posterior and inferior to the posterior facet of the subtalar joint. Although the exact mechanism is unknown, historically many patients report an antecedent increase in walking activity immediately before the onset of symptoms. The diagnosis should be entertained upon clinical suspicion and elicitation of such a history. In addition, the presence of diabetes or other endocrine abnormality should alert the clinician to possible neuropathic fracture (419–421). The physical findings include tenderness to the lateral wall of the calcaneus, immediately posterior to the facet. Swelling and warmth may be present. Pain elicited with compression of the calcaneus is highly suspicious of a stress fracture. Frequently the onset of symptoms precedes the radiographic findings, and ancillary measures can assist in early diagnosis. Technetium bone scans or MRI

Pathway 4

Additional Etiologies of Heel Pain

- **NEUROLOGIC**
 - Radiation
 - Sensory abnormalities
- **ARTHRITEIC**
 - Inflammatory arthritis
 - Other joint pain or swelling
- **TRAUMATIC**
 - History of trauma
 - Global pain with compression
 - Pain worsens with activity
- **OTHER**
 - TUMOR
 - INFECTION
 - VASCULAR
 - CALCANEAL APHYSIS
 - FAT PAD ATROPHY

LOCALIZATION OF PATHOLOGY & DEFINITIVE DIAGNOSIS
- Tarsal tunnel
- Entrapment neuropathy
- Radiculopathy
- Disc disease
- Systemic neuropathies

POSITIVE DIAGNOSIS OF SPECIFIC DISEASE
- Rheumatoid arthritis
- Ankylosing spondylitis
- Reiter’s disease
- Systemic lupus
- Gout
- Psoriasis
- Fibromyalgia
 - Other

DIAGNOSTIC TESTING
- Clinical maneuvers
- Electrodiagnostics
- Imaging studies
- Laboratory testing

(+) RADIOPHGRAPHS (-)
- Fracture or other
 - TREAT OR REFER APPROPRIATELY

(+) Tc99 Scan (-)
- Reevaluate
- Consider other diagnostic studies

Fig. S. In chronic neurologic heel pain, both the medial calcaneal nerve branches and the first branch of the lateral plantar nerve may be implicated.
scans are highly sensitive for stress fractures of the calcaneus in this setting (95, 99, 420). Radiographic features include an area of linear sclerosis corresponding to the fracture site. Treatment is conservative and involves protection and immobilization of the involved foot (133, 332, 419, 422–438). Progression to an acute fracture is uncommon.

Soft tissue trauma (e.g., acute plantar fascia rupture) also can cause heel pain and may be present in patients who have negative radiographic and bone scan findings (391, 439–451). Clinical examination and appropriate diagnostic imaging can lead to establishing a diagnosis and treatment plan. Plantar fascia rupture has also been reported as a complication of heel corticosteroid injection (297, 377, 423, 432, 433, 452–455).

Other Causes of Heel Pain (Pathway 4)

Although less common, conditions such as benign and malignant tumors (297, 377, 423, 428, 454–461), infection (soft tissue and bone) (441, 443–446, 448), and vascular compromise (462) must be considered as etiologies of a patient's heel pain (Figure 9). The potential morbidity of these conditions is substantial. Proper diagnostic testing along with consultation or referral to the appropriate specialist are paramount in these individuals.

In adolescents, calcaneal apophysitis is probably the most frequent etiology of heel pain. Palliative treatment is successful in nearly all cases (443–446, 448, 450).

References

