Review| Volume 51, ISSUE 6, P777-782, November 2012

Download started.


Is Technique Performance a Prognostic Factor in Bone Marrow Stimulation of the Talus?

Published:September 24, 2012DOI:


      Although results of bone marrow stimulation in osteochondral defects of the talus (OCLT) have been satisfactory, the technique performance has not yet been subjected to review as a prognostic factor. The aim of this systematic review is to determine whether variation within technique influences outcome of bone marrow stimulation for OCLT. Electronic databases were searched for articles on OCLT treated with bone marrow stimulation techniques, providing a technique description. Six articles on microfracture were included (198 patients). Lesion size averaged 0.9 cm2 to 4.5 cm2, and follow-up varied from 2 to 6 years. Key elements were removal of unstable cartilage, hole depth variation between 2 and 4 mm until bleeding or fat droplets occurred, and a distance between the created holes of 3 to 4 mm. The success rate (excellent/good results by any clinical outcome score) was 81%. There is a vast similarity in the technique with similar outcomes as in previous general reviews; therefore variation in technique as currently described in the literature does not seem to influence the outcome of bone marrow stimulation for OCLT. Whether the instruments used or the hole depth and geometry influence clinical outcome remains to be determined. Microfracture is safe and effective for OCLTs smaller than 15 mm. However, in this review, only 81% of patients obtained satisfactory results. Larger clinical trials are needed with clearly defined patient groups, technique descriptions, and reproducible outcome measures to provide insight in the specific indications and the preferred technique of bone marrow stimulation.

      Level of Clinical Evidence


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Journal of Foot and Ankle Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bosien W.R.
        • Staples O.S.
        • Russell S.W.
        Residual disability following acute ankle sprains.
        J Bone Joint Surg Am. 1955; 37-A: 1237-1243
        • Robinson D.E.
        • Winson I.G.
        • Harries W.J.
        • Kelly A.J.
        Arthroscopic treatment of osteochondral lesions of the talus.
        J Bone Joint Surg Br. 2003; 85: 989-993
        • DiGiovanni B.F.
        • Fraga C.J.
        • Cohen B.E.
        • Shereff M.J.
        Associated injuries found in chronic lateral ankle instability.
        Foot Ankle Int. 2000; 21: 809-815
        • Saxena A.
        • Eakin C.
        Articular talar injuries in athletes: results of microfracture and autogenous bone graft.
        Am J Sports Med. 2007; 35: 1680-1687
        • Buckwalter J.A.
        Articular cartilage: injuries and potential for healing.
        J Orthop Sports Phys Ther. 1998; 28: 192-202
        • Zengerink M.
        • Struijs P.A.
        • Tol J.L.
        • van Dijk C.N.
        Treatment of osteochondral lesions of the talus: a systematic review.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 238-246
        • Chuckpaiwong B.
        • Berkson E.M.
        • Theodore G.H.
        Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases.
        Arthroscopy. 2008; 24: 106-112
        • Giannini S.
        • Vannini F.
        Operative treatment of osteochondral lesions of the talar dome: current concepts review.
        Foot Ankle Int. 2004; 25: 168-175
        • Alexander A.H.
        • Lichtman D.M.
        Surgical treatment of transchondral talar-dome fractures (osteochondritis dissecans). Long-term follow-up.
        J Bone Joint Surg Am. 1980; 62: 646-652
        • Kumai T.
        • Takakura Y.
        • Higashiyama I.
        • Tamai S.
        Arthroscopic drilling for the treatment of osteochondral lesions of the talus.
        J Bone Joint Surg Am. 1999; 81: 1229-1235
        • Parisien J.S.
        Arthroscopic treatment of osteochondral lesions of the talus.
        Am J Sports Med. 1986; 14: 211-217
        • Steadman J.R.
        • Rodkey W.G.
        • Rodrigo J.J.
        Microfracture: surgical technique and rehabilitation to treat chondral defects.
        Clin Orthop Relat. 2001; 391: S362-S369
        • Alford J.W.
        • Cole B.J.
        Cartilage restoration, part 2: techniques, outcomes, and future directions.
        Am J Sports Med. 2005; 33: 443-460
        • Shapiro F.
        • Koide S.
        • Glimcher M.J.
        Cell origin and differentiation in the repair of full-thickness defects of articular cartilage.
        J Bone Joint Surg Am. 1993; 75: 532-553
        • Verhagen R.A.
        • Struijs P.A.
        • Bossuyt P.M.
        • van Dijk C.N.
        Systematic review of treatment strategies for osteochondral defects of the talar dome.
        Foot Ankle Clin. 2003; 8 (vii–ix): 233-242
        • Schimmer R.C.
        • Dick W.
        • Hintermann B.
        The role of ankle arthroscopy in the treatment strategies of osteochondritis dissecans lesions of the talus.
        Foot Ankle Int. 2001; 22: 895-900
        • Kreuz P.C.
        • Erggelet C.
        • Steinwachs M.R.
        • Krause S.J.
        • Lahm A.
        • Niemeyer P.
        • Ghanem N.
        • Uhl M.
        • Südkamp N.
        Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger?.
        Arthroscopy. 2006; 22: 1180-1186
        • Japour C.
        • Vohra P.
        • Giorgini R.
        • Sobel E.
        Ankle arthroscopy: follow-up study of 33 ankles—effect of physical therapy and obesity.
        J Foot Ankle Surg. 1996; 35: 199-209
        • Loveday D.
        • Clifton R.
        • Robinson A.
        Interventions for treating osteochondral defects of the talus in adults.
        Cochrane Database Syst Rev. 2010; : CD008104
        • Chen H.
        • Sun J.
        • Hoemann C.D.
        • Lascau-Coman V.
        • Ouyang W.
        • McKee M.D.
        • Shive M.S.
        • Buschmann M.D.
        Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair.
        J Orthop Res. 2009; 27: 1432-1438
        • Farr J.
        • Cole B.
        • Dhawan A.
        • Kercher J.
        • Sherman S.
        Clinical cartilage restoration: evolution and overview.
        Clin Orthop Relat Res. 2011; ([epub ahead of print])
        • Chen H.
        • Chevrier A.
        • Hoemann C.D.
        • Sun J.
        • Ouyang W.
        • Buschmann M.D.
        Characterization of subchondral bone repair for marrow-stimulated chondral defects and its relationship to articular cartilage resurfacing.
        Am J Sports Med. 2011; 39: 1731-1740
      1. The Journal of Bone and Joint Surgery Instructions for Authors. Available at: Accessed July 1, 2011.

        • Magnuson P.B.
        Technique of debridement of the knee joint for arthritis.
        Surg Clin North Am. 1946; 26: 249-266
        • Kim H.K.
        • Moran M.E.
        • Salter R.B.
        The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits.
        J Bone Joint Surg Am. 1991; 73: 1301-1315
        • Frisbie D.D.
        • Trotter G.W.
        • Powers B.E.
        • Rodkey W.G.
        • Steadman J.R.
        • Howard R.D.
        • Park R.D.
        • McIlwraith C.W.
        Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses.
        Vet Surg. 1999; 28: 242-255
        • Johnson L.L.
        Arthroscopic abrasion arthroplasty: a review.
        Clin Orthop Relat Res Oct. 2001; : S306-S317
        • Nakajima H.
        • Goto T.
        • Horikawa O.
        • Kikuchi T.
        • Shinmei M.
        Characterization of the cells in the repair tissue of full-thickness articular cartilage defects.
        Histochem Cell Biol. 1998; 109: 331-338
        • Mithoefer K.
        • Williams 3rd, R.J.
        • Warren R.F.
        • Potter H.G.
        • Spock C.R.
        • Jones E.C.
        • Wickiewicz T.L.
        • Marx R.G.
        Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. Surgical technique.
        J Bone Joint Surg Am. 2006; 88: 294-304
        • Ferkel R.D.
        • Zanotti R.M.
        • Komenda G.A.
        • Sgaglione N.A.
        • Cheng M.S.
        • Applegate G.R.
        • Dopirak R.M.
        Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results.
        Am J Sports Med. 2008; 36: 1750-1762
        • Hunt S.A.
        • Sherman O.
        Arthroscopic treatment of osteochondral lesions of the talus with correlation of outcome scoring systems.
        Arthroscopy. 2003; 19: 360-367
        • Lee K.-B.
        • Bai L.-B.
        • Chung J.-Y.
        • Seon J.-K.
        Arthroscopic microfracture for osteochondral lesions of the talus.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 247-253
        • Gobbi A.
        • Francisco R.A.
        • Lubowitz J.H.
        • Allegra F.
        • Canata G.
        Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation.
        Arthroscopy. 2006; 22: 1085-1092
        • Becher C.
        • Driessen A.
        • Hess T.
        • Longo U.G.
        • Maffulli N.
        • Thermann H.
        Microfracture for chondral defects of the talus: maintenance of early results at midterm follow-up.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 656-663
        • Guo Q.-W.
        • Hu Y.-L.
        • Jiao C.
        • Yu C.-L.
        • Ao Y.-F.
        Arthroscopic treatment for osteochondral lesions of the talus: analysis of outcome predictors.
        Chin Med J (Engl). 2010; 123: 296-300
        • Choi W.J.
        • Park K.K.
        • Kim B.S.
        • Lee J.W.
        Osteochondral lesion of the talus: is there a critical defect size for poor outcome?.
        Am J Sports Med. 2009; 37: 1974-1980
        • Kitaoka H.B.
        • Alexander I.J.
        • Adelaar R.S.
        • Nunley J.A.
        • Myerson M.S.
        • Sanders M.
        Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes.
        Foot Ankle Int. 1994; 15: 349-353
        • Revill S.I.
        • Robinson J.O.
        • Rosen M.
        • Hogg M.I.
        The reliability of a linear analogue for evaluating pain.
        Anaesthesia. 1976; 31: 1191-1198
        • Elias I.
        • Zoga A.C.
        • Morrison W.B.
        • Besser M.P.
        • Schweitzer M.E.
        • Raikin S.M.
        Osteochondral lesions of the talus: localization and morphologic data from 424 patients using a novel anatomical grid scheme.
        Foot Ankle Int. 2007; 28: 154-161
        • Baker C.L.
        • Andrews J.R.
        • Ryan J.B.
        Arthroscopic treatment of transchondral talar dome fractures.
        Arthroscopy. 1986; 2: 82-87
        • Ogilvie-Harris D.J.
        • Sarrosa E.A.
        Arthroscopic treatment of osteochondritis dissecans of the talus.
        Arthroscopy. 1999; 15: 805-808
        • Baker Jr., C.L.
        • Morales R.W.
        Arthroscopic treatment of transchondral talar dome fractures: a long-term follow-up study.
        Arthroscopy. 1999; 15: 197-202
        • Schafer D.
        • Boss A.
        • Hintermann B.
        Accuracy of arthroscopic assessment of anterior ankle cartilage lesions.
        Foot Ankle Int. 2003; 24: 317-320
        • Tol J.L.
        • Struijs P.A.
        • Bossuyt P.M.
        • Verhagen R.A.
        • van Dijk C.N.
        Treatment strategies in osteochondral defects of the talar dome: a systematic review.
        Foot Ankle Int. 2000; 21: 119-126
        • Chen H.
        • Hoemann C.D.
        • Sun J.
        • Chevrier A.
        • McKee M.D.
        • Shive M.S.
        • Hurtig M.
        • Buschmann M.D.
        Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair.
        J Orthop Res. 2011; 29: 1178-1184
        • Bhosale A.M.
        • Richardson J.B.
        Articular cartilage: structure, injuries and review of management.
        Br Med Bull. 2008; 87: 77-95
        • van Bergen C.J.
        • de Leeuw P.A.
        • van Dijk C.N.
        Treatment of osteochondral defects of the talus.
        Rev Chir Orthop Reparatrice Appar Mot. 2008; 94: 398-408
        • Zengerink M.
        • Szerb I.
        • Hangody L.
        • Dopirak R.M.
        • Ferkel R.D.
        • van Dijk C.N.
        Current concepts: treatment of osteochondral ankle defects.
        Foot Ankle Clin. 2006; 11 (vi): 331-359
        • Han S.H.
        • Lee J.W.
        • Lee D.Y.
        • Kang E.S.
        Radiographic changes and clinical results of osteochondral defects of the talus with and without subchondral cysts.
        Foot Ankle Int. 2006; 27: 1109-1114
        • Jung H.G.
        • Carag J.A.
        • Park J.Y.
        • Kim T.H.
        • Moon S.G.
        Role of arthroscopic microfracture for cystic type osteochondral lesions of the talus with radiographic enhanced MRI support.
        Knee Surg Sports Traumatol Arthrosc. 2011; 19: 858-862