Advertisement
Original Research| Volume 52, ISSUE 4, P432-443, July 2013

Plantar Pressure Distribution in a Hyperpronated Foot before and after Intervention with an Extraosseous Talotarsal Stabilization Device—A Retrospective Study

Published:April 29, 2013DOI:https://doi.org/10.1053/j.jfas.2013.03.011

      Abstract

      Plantar pressure measurements have long been used by clinicians to provide information regarding potential impairments and disorders of the foot and ankle. Elevations in peak plantar pressures or a poor distribution of these pressures can be an indication of pathomechanics in the foot. Lower extremity deficits such as sensory impairment, foot deformities, limited joint mobility, and reduced plantar tissue thickness have been associated with high plantar pressures. The total pressures, pressure distribution, and peak pressures provide useful information to evaluate the abnormal functioning of the talotarsal joint. Instability of the talotarsal joint can result in excessive forces exerted on the joints and surrounding tissues in the foot that can then lead to dysfunction of the proximal musculoskeletal kinetic chain. In the present study, we performed a retrograde analysis of the pre- and postoperative measurements of the peak plantar pressures, peak forces, and area of contact between the foot and the ground during each phase of the gait cycle for 6 patients (12 feet) who had undergone a bilateral extraosseous talotarsal stabilization procedure using a type II extraosseous talotarsal stabilization device. After the procedure, a significant reduction was seen in the peak pressures (42%) over the entire foot and a significant increase in the contact area (19.7%) between the foot and the floor. This could imply that the extraosseous talotarsal stabilization procedure was effective in stabilizing the talotarsal joint complex, thus eliminating abnormal hindfoot motion and restoring the normal biomechanics of the foot and ankle complex, as indicated by a reduction and realignment of the peak plantar pressures and forces.

      Level of Clinical Evidence

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Foot and Ankle Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Choi B.C.
        • Pak A.
        • Choi J.C.
        Daily step goal of 10,000 steps: a literature review.
        Clin Invest Med. 2007; 30: 146-151
        • Soames R.W.
        Foot pressure patterns during gait.
        J Biomed Eng. 1985; 7: 120-126
        • Sneyers C.J.
        • Lysens R.
        • Feys H.
        • Andries R.
        Influence of malalignment of feet on the plantar pressure pattern in running.
        Foot Ankle Int. 1995; 16: 624-632
        • Elftman H.
        Dynamic structure of the human foot.
        Artif Limbs. 1969; 13: 49-58
        • Orlin M.N.
        • McPoil T.G.
        Plantar pressure assessment.
        Phys Ther. 2000; 80: 399-409
        • Veves A.
        • Van Ross E.R.
        • Boulton A.J.
        Foot pressure measurements in diabetic and nondiabetic amputees.
        Diabetes Care. 1992; 15: 905-907
        • Mueller M.J.
        • Sinacore D.R.
        • Hoogstrate S.
        • Daly L.
        Hip and ankle walking strategies: effect on peak plantar pressures and implications for neuropathic ulceration.
        Arch Phys Med Rehabil. 1994; 75: 1196-1200
        • Vela S.A.
        • Lavery L.A.
        • Armstrong D.G.
        • Anaim A.A.
        The effect of increased weight on peak pressures: implications for obesity and diabetic foot pathology.
        J Foot Ankle Surg. 1998; 37: 416-420
        • Fernando D.J.
        • Masson E.A.
        • Veves A.
        • Boulton A.J.
        Relationship of limited joint mobility to abnormal foot pressures and diabetic foot ulceration.
        Diabetes Care. 1991; 14: 8-11
        • Boulton A.J.M.
        • Hardisty C.A.
        • Betts R.P.
        • Franks C.I.
        • Worth R.C.
        • Ward J.D.
        • Duckworth T.
        Dynamic foot pressure and other studies as diagnostic and management aids in diabetic neuropathy.
        Diabetes Care. 1983; 6: 26-33
        • Caselli A.
        • Pham H.
        • Giurini J.M.
        • Armstrong D.G.
        • Veves A.
        The forefoot-to-rearfoot plantar pressure ratio is increased in severe diabetic neuropathy and can predict foot ulceration.
        Diabetes Care. 2002; 25: 1066-1071
        • Armstrong D.G.
        • Stacpoole-Shea S.
        • Nguyen H.
        • Harkless L.B.
        Lengthening of the Achilles tendon in diabetic patients who are at high risk for ulceration of the foot.
        J Bone Joint Surg. 1999; 81: 535-538
        • Christensen J.C.
        • Campbell N.
        • DiNucci K.
        Closed kinetic chain tarsal mechanics of subtalar joint arthroereisis.
        J Am Podiatr Med Assoc. 1996; 86: 467-473
        • Huson A.
        Biomechanics of the tarsal mechanism: a key to the function of the normal human foot.
        J Am Podiatr Med Assoc. 2000; 90: 12-17
        • Sammarco V.J.
        The talonavicular and calcaneocuboid joints: anatomy, biomechanics, and clinical management of the transverse tarsal joint.
        Foot Ankle Clin. 2004; 9: 127-145
        • Elftman H.
        The transverse tarsal joint and its control.
        Clin Orthop. 1960; 16: 41-46
        • Wülker N.
        • Stukenborg C.
        • Savory K.M.
        • Alfke D.
        Hindfoot motion after isolated and combined arthrodeses: measurements in anatomic specimens.
        Foot Ankle Int. 2000; 21: 921-927
        • Donatelli R.A.
        Normal biomechanics of the foot and ankle.
        J Orthop Sports Phys Ther. 1985; 7: 91-95
        • Root M.L.
        • Orien W.P.
        • Weed J.H.
        Normal and Abnormal Function of the Foot, vol. 2.
        Clinical Biomechanics, Los Angeles1977 (pp 128–131, 137, 151)
        • Tiberio D.
        The effect of excessive subtalar joint pronation on patellofemoral mechanics: a theoretical model.
        J Orthop Sports Phys Ther. 1987; 9: 160-165
        • Graham M.E.
        Hyperpronation—the role of subtalar arthroereisis.
        Eur Musculoskel Rev. 2010; 5: 65-69
        • Tomaro J.E.
        • Burdett R.G.
        • Chadran A.M.
        Subtalar joint motion and the relationship to lower extremity overuse injuries.
        J Am Podiatr Med Assoc. 1996; 86: 427-432
        • Inman V.T.
        The influence of the foot–ankle complex on the proximal skeletal structures.
        Artif Limbs. 1969; 13: 59-65
        • Tao W.
        • Liu T.
        • Zheng R.
        Gait analysis using wearable sensors.
        Sensors. 2012; 12: 2255-2283
        • Eslami M.
        • Begon M.
        • Hinse S.
        • Sadeghi H.
        • Popov P.
        • Allard P.
        Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running.
        J Sci Med Sport. 2009; 12: 679-684
        • Mueller M.J.
        • Strube M.J.
        • Allen B.T.
        Therapeutic footwear can reduce plantar pressures in patients with diabetes and transmetatarsal amputation.
        Diabetes Care. 1997; 20: 637-641
        • Kitaoka H.B.
        • Crevoisier X.M.
        • Harbst K.
        • Hansen D.
        • Kotajarvi B.
        • Kaufman K.
        The effect of custom-made braces for the ankle and hindfoot on ankle and foot kinematics and ground reaction forces.
        Arch Phys Med Rehabil. 2006; 87: 130-135
        • Janisse D.J.
        • Janisse E.
        Shoe modification and the use of orthoses in the treatment of foot and ankle pathology.
        J Am Acad Orthop Surg. 2008; 16: 152-158
        • Kato H.
        • Takada T.
        • Kawamura T.
        • Hotta N.
        • Torii S.
        The reduction and redistribution of plantar pressures using foot orthoses in diabetic patients.
        Diabetes Res Clin Pract. 1996; 31: 115-118
        • Addante J.B.
        • Chin M.W.
        • Loomis J.C.
        • Burleigh W.
        • Lucarelli J.E.
        Subtalar joint arthroereisis with SILASTIC silicone sphere: a retrospective study.
        J Foot Surg. 1992; 31: 47-51
        • Brancheau S.
        • Maxwell J.
        • Ritchey K.L.
        • Knudson W.
        The Valenti STJ arthroereisis implant: a ten-year retrospective study.
        in: Reconstructive Surgery of the Foot and Leg Update, 1996. Podiatry Institute, Tucker, GA1996: 44-53
        • Maxwell J.R.
        • Carro A.
        • Sun C.
        Use of the Maxwell-Brancheau arthroereisis implant for the correction of posterior tibial tendon dysfunction.
        Clin Podiatr Med Surg. 1999; 16: 479-489
        • Needleman R.L.
        Current topic review: subtalar arthroereisis for the correction of flexible flatfoot.
        Foot Ankle Int. 2005; 26: 336-346
        • Schon L.C.
        Subtalar arthroereisis: a new exploration of an old concept.
        Foot Ankle Clin. 2007; 12: 329-339
        • Chang T.J.
        • Lee J.
        Subtalar joint arthroereisis in adult-acquired flatfoot and posterior tibial tendon dysfunction.
        Clin Podiatr Med Surg. 2007; 24 (viii): 687-697
        • Needleman R.L.
        A surgical approach for flexible flatfeet in adults including a subtalar arthroereisis with the MBA sinus tarsi implant.
        Foot Ankle Int. 2006; 27: 9-18
        • Richie Jr., D.H.
        Biomechanics and clinical analysis of the adult acquired flatfoot.
        Clin Podiatr Med Surg. 2007; 24 (vii): 617-644
        • Husain Z.S.
        • Fallat L.M.
        Biomechanical analysis of Maxwell-Brancheau arthroereisis implants.
        J Foot Ankle Surg. 2002; 41: 352-358
        • Graham M.E.
        • Jawrani N.T.
        Extraosseous talotarsal stabilization devices: a new classification system.
        J Foot Ankle Surg. 2012; 51: 613-619
        • Graham M.E.
        • Jawrani N.
        • Chikka A.
        Extraosseous talotarsal stabilization using HyProCure® in adults: a 5-year retrospective follow-up.
        J Foot Ankle Surg. 2012; 51: 23-29
        • Graham M.E.
        • Chikka A.
        Validation of the talar–second metatarsal angle as a standard measurement for radiographic evaluation.
        J Am Podiatr Med Assoc. 2011; 101: 475-483
        • Close J.R.
        • Inman V.T.
        • Poor P.M.
        • Todd F.N.
        The function of the subtalar joint.
        Clin Orthop Relat Res. 1967; 50: 159-179
        • Wright D.G.
        • Desai S.M.
        • Henderson W.H.
        Action of the subtalar and ankle–joint complex during the stance phase of walking.
        J Bone Joint Surg Am. 1964; 46: 361-382
      1. Allen S, Waterlop I, Lardner R. A few words about pronation. Dynamic Chiropractic Canada. Available at http://www.chiroweb.com/mpacms/dc_ca/article.php?id=53088. Accessed April 22, 2013.

        • Isman R.E.
        • Inmam V.T.
        Anthropometric studies of the human foot and ankle.
        Bull Prosthet Res. 1969; 10: 97-129
        • Lundberg A.
        • Goldie I.
        • Kalin B.
        • Selvik G.
        Kinematics of ankle/foot complex: plantarflexion and dorsiflexion.
        Foot Ankle. 1989; 9: 194-200
        • Lundberg A.
        • Svensson O.K.
        • Bylund C.
        • Goldie I.
        • Selvik G.
        Kinematics of ankle/foot complex: pronation and supination.
        Foot Ankle. 1989; 9: 248-253
        • Root M.L.
        • Weed J.H.
        • Sgarlato T.E.
        • Bluth D.R.
        Axis of motion of the subtalar joint: an anatomical study.
        J Am Podiatr Assoc. 1966; 56: 149-155
        • Michaud T.C.
        Foot orthoses and other forms of conservative foot care.
        in: Mass N. Williams & Wilkins, Baltimore1997
        • Phillips R.D.
        • Philips R.L.
        Quantitative analysis of the locking mechanism of the midtarsal joint.
        J Am Podiatr Med Assoc. 1983; 73: 243-253
        • Buchbinder M.R.
        • Napora N.J.
        • Biggs E.W.
        The relationship of abnormal pronation to chondromalacia of the patella in distance runners.
        J Am Podiatr Assoc. 1979; 69: 159-162
        • Levens A.S.
        • Inman V.T.
        • Blosser J.A.
        Transverse rotation of the segments of the lower extremity in locomotion.
        J Bone Joint Surg Am. 1948; 30: 859-872
        • DeLeo A.T.
        • Dierks T.A.
        • Ferber R.
        • Davis I.S.
        Lower extremity joint coupling during running: a current update.
        Clin Biomech (Bristol, Avon). 2004; 19: 983-991
        • Williams B.E.
        • Yakel J.D.
        Clinical uses of in-shoe pressure analysis in podiatric sports medicine.
        J Am Podiatr Med Assoc. 2007; 97: 49-58
        • Karki S.
        • Lekkala J.
        • Kaistila T.
        • Laine H.J.
        • Maenpaa H.
        • Kuokkanen H.
        Plantar pressure distribution measurements: an approach to different methods to compute a pressure map.
        Fundamental Applied Metrology. 2009; 23: 1770-1774
        • Andersen H.
        • Gadeberg P.C.
        • Brock B.
        • Jakobsen J.
        Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study.
        Diabetologia. 1997; 40: 1062-1069
        • Sharkey N.A.
        • Donahue S.W.
        • Ferris L.
        Biomechanical consequences of plantar fascial release or rupture during gait. Part II: alterations in forefoot loading.
        Foot Ankle Int. 1999; 20: 86-96
        • Graham M.E.
        • Jawrani N.T.
        • Goel V.K.
        Evaluating plantar fascia strain in hyperpronating cadaveric feet following an extra-osseous talotarsal stabilization procedure.
        J Foot Ankle Surg. 2011; 50: 682-686
        • Putti A.B.
        • Arnold G.P.
        • Cochrane L.
        • Abboud R.J.
        The Pedar® in-shoe system: repeatability and normal pressure values.
        Gait Posture. 2006; 25: 401-405
        • Martinez A.
        • Carlos J.
        • Pascual J.
        • Sanchez R.
        BioFoot® in-shoe system: normal values and assessment of the reliability and repeatability.
        Foot. 2007; 17: 190-196
        • Leber C.
        • Evanski P.M.
        A comparison of shoe insole materials in plantar pressure relief.
        Prosthet Orthot Int. 1986; 10: 135-138
        • Bus S.A.
        • Valk G.D.
        • Van Deursen R.W.
        • Armstrong D.G.
        • Caravaggi C.
        • Hlavacek P.
        • Bakker K.
        • Cavanagh P.R.
        The effectiveness of footwear and offloading interventions to prevent and heal foot ulcers and reduce plantar pressure in diabetes: a systematic review.
        Diabetes Metab Res Rev. 2008; 24: S162-S180