Advertisement
Case Reports and Series| Volume 56, ISSUE 5, P985-989, September 2017

Treatment of Medial Tibial Stress Syndrome With Radial Soundwave Therapy in Elite Athletes: Current Evidence, Report on Two Cases, and Proposed Treatment Regimen

      Abstract

      Two case reports of high-level athletes with medial tibial stress syndrome (MTSS), 1 an Olympian with an actual stress fracture, are presented. Successful treatment included radial soundwave therapy, pneumatic leg braces, relative rest using an antigravity treadmill, and temporary foot orthoses. Radial soundwave therapy has a high level of evidence for treatment of MTSS. We also present recent evidence of the value of vitamin D assessment. Both patients had a successful outcome with minimal downtime. Finally, a suggested treatment regimen for MTSS is presented.

      Level of Clinical Evidence

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Foot and Ankle Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Devas M.B.
        Stress fractures of the tibia in athletes or shin soreness.
        Bone Joint J. 1958; 40: 227-239
        • Moen M.H.
        • Tol J.H.
        • Weir A.
        • Steunebrink M.
        • De Winter T.C.
        Medial tibial stress syndrome.
        Sports Med. 2009; 39: 523-546
        • Fredericson M.
        • Bergman A.G.
        • Hoffman K.L.
        • Dillingham M.S.
        Tibial stress reaction in runners: correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system.
        Am J Sports Med. 1995; 23: 472-481
        • Nattiv A.
        • Kennedy G.
        • Barrack M.T.
        • Abdelkerim A.
        • Goolsby M.A.
        • Arends J.C.
        • Seeger L.L.
        Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes.
        Am J Sports Med. 2013; 41: 1930-1941
        • Bouché R.T.
        • Johnson C.H.
        Medial tibial stress syndrome (tibial fasciitis).
        J Am Podiatr Med Assoc. 2007; 97: 31-36
        • Saxena A.
        • O'Brien T.
        • Bunce D.
        Anatomic dissection of the tibialis posterior muscle and its correlation to medial tibial stress syndrome.
        J Foot Surg. 1990; 29: 105-108
        • Gollwitzer H.
        • Saxena A.
        • DiDomenico L.A.
        • Galli L.
        • Bouché R.T.
        • Caminear D.S.
        • Fullem B.
        • Vester J.C.
        • Horn C.
        • Banke I.J.
        • Burgkart R.
        • Gerdesmeyer L.
        Clinically relevant effectiveness of focused extracorporeal shock wave therapy in the treatment of chronic plantar fasciitis: a randomized, controlled multicenter study.
        J Bone Joint Surg Am. 2015; 97: 701-708
        • Hamstra-Wright K.L.
        • Bliven K.C.H.
        • Bay C.
        Risk factors for medial tibial stress syndrome in physically active individuals such as runners and military personnel: a systematic review and meta-analysis.
        Br J Sports Med. 2015; 49: 362-369
        • Moen M.H.
        • Rayer S.
        • Schipper M.
        • Schmiki S.
        • Weir A.
        • Tol J.L.
        • Backx F.J.
        Shockwave treatment for medial tibial stress syndrome in athletes: a prospective controlled study.
        Br J Sports Med. 2012; 46: 253-257
        • Rompe J.D.
        • Cacchio A.
        • Furia J.P.
        • Maffulli N.
        Low-energy extracorporeal shock wave therapy as a treatment for medial tibial stress syndrome.
        Am J Sports Med. 2010; 38: 125-132
        • Newman P.
        • Waddington G.
        • Adams R.
        Shockwave treatment for medial tibial stress syndrome: a randomized double blind sham-controlled pilot trial.
        J Sci Med Sport. 2010; 20: 220-224
        • Schmitz C.
        • Császár N.B.M.
        • Milz S.
        • Schieker M.
        • Maffulli N.
        • Rompe J.-D.
        • Furia J.P.
        Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database.
        Br Med Bull. 2015; 116: 115-138
        • Zimmermann W.O.
        • Helmhout P.H.
        • Beutler A.
        Prevention and treatment of exercise related leg pain in young soldiers: a review of the literature and current practice in the Dutch Armed Forces.
        J R Army Med Corps. 2017; 163: 94-103
        • Whitelaw G.P.
        • Wetzler M.J.
        • Levy A.S.
        • Segal D.
        • Bissonnette K.
        A pneumatic leg brace for the treatment of tibial stress fractures.
        Clin Orthop Relat Res. 1991; 270: 301-305
        • Loudon J.K.
        • Dolphino M.R.
        Use of foot orthoses and calf stretching for individuals with medial tibial stress syndrome.
        Foot Ankle Spec. 2010; 3: 15-20
        • Yeung S.S.
        • Yeung E.W.
        • Gillespie L.D.
        Interventions for preventing lower limb soft-tissue running injuries.
        Cochrane Database Syst Rev. 2011; : CD001256
        • Gan T.Y.
        • Kuah D.E.
        • Graham K.S.
        • Markson G.
        Low-intensity pulsed ultrasound in lower limb bone stress injuries: a randomized controlled trial.
        Clin J Sport Med. 2014; 24: 457-460
        • Sommer H.M.
        • Vallentyne S.W.
        Effect of foot posture on the incidence of medial tibial stress syndrome.
        Med Sci Sports Exerc. 1995; 27: 800-804
        • Jarvis H.
        • Nestor C.J.
        • Bowden P.D.
        • Jones R.K.
        Challenging the foundations of the clinical model of foot function: further evidence that the root model assessments fail to appropriately classify foot function.
        J Foot Ankle Res. 2017; 10: 7
        • Saxena A.
        • Granot A.
        Use of an anti-gravity treadmill in the rehabilitation of the operated Achilles tendon: a pilot study.
        J Foot Ankle Surg. 2011; 50: 558-561
        • Tenforde A.S.
        • Kraus E.
        • Fredericson M.
        Bone stress injuries in runners.
        Phys Med Rehabil Clin North Am. 2016; 27: 139-149
        • Tenforde A.S.
        • Sainani K.L.
        • Carter Sayres L.
        • Milgrom C.
        • Fredericson M.
        Participation in ball sports may represent a prehabilitation strategy to prevent future stress fractures and promote bone health in young athletes.
        PM R. 2015; 7: 222-225
        • Fishman M.P.
        • Lombardo S.J.
        • Kharrazi F.D.
        Vitamin D deficiency among professional basketball players.
        Orthop J Sports Med. 2016; 4 (2325967116655742)
        • Miller J.R.
        • Dunn K.W.
        • Ciliberti Jr., L.J.
        • Patel R.D.
        • Swanson B.A.
        Association of vitamin D with stress fractures: a retrospective cohort study.
        J Foot Ankle Surg. 2016; 55: 117-120
        • Burgi A.A.
        • Gorham E.D.
        • Garland C.F.
        • Mohr S.B.
        • Garland F.C.
        • Zeng K.
        • Thompson K.
        • Lappe J.M.
        High serum 25-hydroxyvitamin D is associated with a low incidence of stress fractures.
        J Bone Miner Res. 2011; 26: 2371-2377
        • Clutton J.
        • Perera A.
        Vitamin D insufficiency and deficiency in patients with fractures of the fifth metatarsal.
        Foot (Edinb). 2016; 27: 50-52
        • Clement D.
        • Ammann W.
        • Taunton J.E.
        • Lloyd-Smith R.
        • Jesperson D.
        • McKay H.
        • Goldring J.
        • Matheson G.O.
        Exercise induced stress injuries to the femur.
        Int J Sports Med. 1993; 14: 347-352