Advertisement
Research Article| Volume 59, ISSUE 6, P1229-1233, November 2020

Charcot Reconstruction: Outcomes in Patients With and Without Diabetes

Published:August 07, 2020DOI:https://doi.org/10.1053/j.jfas.2020.05.019

      Abstract

      The objective of this study is to compare risk adjusted matched cohorts of Charcot neuroarthropathy patients who underwent osseous reconstruction with and without diabetes. The 2 groups were matched based on age, body mass index, hypertension, history of end-stage renal disease, and peripheral arterial disease. Bivariate analysis was performed for preoperative infection, location of Charcot breakdown, and post reconstruction outcomes, in patients with a minimum of 1 year follow-up period. Through bivariate analysis, presence of preoperative ulceration (p = .0499) was found to be statistically more likely in the patients with diabetes; whereas, delayed osseous union (p = .0050) and return to ambulation (p ≤ .0001) was statistically more likely in patients without diabetes. The nondiabetic Charcot patients were 17.6 folds more likely to return to ambulation (odds ratio [OR] 17.6 [95% confidence interval {CI} {3.5-87.6}]), and 16.4 folds more likely to have delayed union (OR 16.4 [95% CI {1.9-139.6)]). Subanalysis compared well-controlled diabetic and nondiabetic Charcot neuroarthropathy patients for same factors. Multivariate analysis, in the subanalysis, found return to ambulation was 15.1 times likely to occur in the nondiabetic CN cohort (OR 15.1 [95% CI 1.3-175.8]) compared to the well-controlled diabetic CN cohort.

      Level of Clinical Evidence

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Foot and Ankle Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jeffcoate W
        Charcot neuro-osteoarthropathy.
        Diabetes/Metabolism Res Rev. 2008; 24: S62-S65
        • Larson SA
        • Burns PR
        The pathogenesis of Charcot neuroarthropathy: current concepts.
        Diabetic Foot Ankle. 2012; 3: 1-4
        • Chisholm KA
        • Gilchrist JM
        The Charcot joint: a modern neurologic perspective.
        J Clin Neuromusc Dis. 2011; 13: 1-13
        • Slater RA
        • Ramot Y
        • Buchs A
        • Rapoport MJ
        The diabetic Charcot foot.
        Israel Med Assoc J. 2004; 6: 280-283
        • Johnson-Lynn SE
        • McCaskie AW
        • Coll AP
        • Robinson AHN
        Neuroarthropathy in diabetes: pathogenesis of Charcot arthropathy.
        Bone Joint Res. 2018; 7: 373-378
        • Rogers LC
        • Frykberg RG
        • Armstrong DG
        • Boulton AJM
        • Edmonds M
        • Van GH
        • Hartemann A
        • Game F
        • Jeffcoate W
        • Jirkovska A
        • Jude E
        • Morbach S
        • Morrison WB
        • Pinzur M
        • Pitocco D
        • Sanders L
        • Wukich D
        • Uccioli L
        The Charcot foot in diabetes.
        Diabetes Care. 2011; 34: 2123-2129
        • Kaynak G
        • Birsel O
        • Guven MF
        • Ogut T
        An overview of the Charcot foot pathophysiology.
        Diabetic Foot Ankle. 2013; 4: 1-9
        • Schneekloth BJ
        • Lowery NJ
        • Wukich DK
        Charcot neuroarthropathy in patients with diabetes: an updated systematic review of surgical management.
        J Foot Ankle Surg. 2016; 55: 586-590
        • Shibuya N
        • La Fontaine J
        • Frania SJ
        Alcohol-induced neuroarthropathy in the foot: a case series and review of literature.
        J Foot Ankle Surg. 2008; 47: 118-124
        • Strotman PK
        • Reif TJ
        • Pinzur MS
        Charcot arthropathy of the foot and ankle.
        Foot Ankle Int. 2016; 37: 1255-1263
        • Arapostathi C
        • Tentolouris N
        • Jude EB
        Charcot foot associated with chronic alcohol abuse.
        BMJ Case Rep. 2013;
        • Hershman DL
        • Lacchetti C
        • Dworkin RH
        • Lavoie Smith EM
        • Bleeker J
        • Cavaletti G
        • Chauhan C
        • Gavin P
        • Lavino A
        • Lustberg MB
        • Paice J
        • Schneider B
        • Smith ML
        • Smith T
        • Terstriep S
        • Wagner-Johnston N
        • Bak K
        • Loprinzi CL
        Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline.
        J Clin Oncol. 2014; 32: 1941-1967
        • Fryberg R
        • Belczyk R
        Epidemiology of the Charcot foot.
        Clin Podiatr Med Surg. 2008; 25: 17-28
        • Standaert C.
        • Cardenas D
        • Anderson P
        Charcot spine as a late complication of traumatic spinal cord injury.
        Arch Phys Med Rehabilit. 1997; 78: 221-225
        • Klit H
        • Finnerup N
        • Jensen T
        Central post-stroke pain: clinical characteristics, pathophysiology, and management.
        Lancet. 2009; 8: 857-868
        • Bariteau JT
        • Tenenbaum S
        • Rabinovich A
        • Brodsky JW
        Charcot arthropathy of the foot and ankle in patients with idiopathic neuropathy.
        Foot Ankle Int. 2014; 35: 996-1001
        • Dhatariya K
        • Gooday C
        • Murchison R
        • Bullen B
        • Hutchinson R
        Pedal neuroarthropathy in a nondiabetic patient as a result of long-term amiodarone use.
        J Foot Ankle Surg. 2009; 48: 362-364
        • Young N
        • Neiderer K
        • Martin B
        • Jolley D
        • Dancho JF
        HIV neuropathy induced Charcot neuroarthropathy: a case discussion.
        Foot. 2012; 22: 112-116
        • McKay DJ
        • Sheehan P
        • DeLauro TM
        • Iannuzzi LN
        Vincristine-induced neuroarthropathy (Charcot's joint).
        J Am Podiatr Med Assoc. 2000; 90: 478-480
        • Nguyen M
        • Peschken CA
        Severe Sensory Neuronopathy in primary Sjögren syndrome resulting in Charcot arthropathy.
        J Rheumatol. 2016; 43: 1449-1451
        • Fauzi AA
        • Chung TY
        • Latif LA
        Risk factors of diabetic foot Charcot arthropathy: a case-control study at a Malaysian tertiary care center.
        Singapore Med J. 2016; 57: 198-203
        • Sohn MW
        • Stuck RM
        • Pinzur M
        • Lee TA
        Budiman-Mak E. Lower-extremity amputation risk after Charcot arthropathy and diabetic foot ulcer.
        Diabetes Care. 2009; 33: 98-100
        • Wukich DK
        • Sadoskas D
        • Vaudreuil NJ
        • Fourman M
        Comparison of diabetic Charcot patients with and without foot wounds.
        Foot Ankle Int. 2017; 38: 140-148
        • Wrobel JS
        • Najafi B
        Diabetic foot biomechanics and gait dysfunction.
        J Diabetes Sci Technol. 2010; 4: 833-845
        • Couppé C
        • Svensson RB
        • Kongsgaard M
        • Kovanen V
        • Grosset JF
        • Snorgaard O
        • Bencke J
        • Larsen JO
        • Bandholm T
        • Christensen TM
        • Boesen A
        • Helmark IC
        • Aagaard P
        • Kjaer M
        • Magnusson SP
        Human Achilles tendon glycation and function in diabetes.
        J Appl Physiol. 2016; 120: 130-137
        • Bus SA
        • Yang QX
        • Wang JH
        • Smith MB
        • Wunderlich R
        • Cavanagh PR
        Intrinsic muscle atrophy and toe deformity in the diabetic neuropathic foot: a magnetic resonance imaging study.
        Diabetes Care. 2002; 25: 1444-1450
        • Lavery LA
        • Armstrong DG
        • Boulton AJM
        Ankle equinus deformity and Its relationship to high plantar pressure in a large population with diabetes mellitus.
        J Am Podiatr Med Assoc. 2002; 92: 479-482
        • Boberg JS
        Surgical decision making in hammertoe deformity.
        in: Vickers NS Reconstructive Surgery of the Foot and Leg: Updated in Tucker GA Podiatry Institute. 1997
        • McGlamry ED
        • Jimenez L
        • Green RD
        • Smith TF
        • Pfeifer KD
        • Fishco WD
        • Crawford ME
        • Downey MS
        • McGlamry MC
        Lesser ray deformities.
        McGlamry's Comprehensive Textbook of Foot and Ankle Surgery. ed 3. Lippincott Williams & Wilkins: Wolters Kluwer, Philadelphia2001
        • Attinger CE
        • Brown BJ
        Amputation and ambulation in diabetic patients: function is the goal.
        Diabetes/Metabolism Res Rev. 2012; 28: 93-96
        • Kanade RV
        • Van Deursen RW
        • Harding KG
        • Price PE
        Investigation of standing balance in patients with diabetic neuropathy at different stages of foot complications.
        Clin Biomech. 2008; 23: 1183-1191
        • Canalis E
        • Mazziotti G
        • Giustina A
        • Bilezikian JP
        Glucocorticoid-induced osteoporosis: pathophysiology and therapy.
        Osteoporosis Int. 2007; 18: 1319-1328
        • Weinstein RS
        Glucocorticoid-induced bone disease.
        New Engl J Med. 2011; 365: 62-70
        • Rangel EB
        • Sá JR
        • Gomes SA
        • Carvalho AB
        • Melaragno CS
        • Gonzalez AM
        • Linhares MM
        • Medina-Pestana JO
        Charcot neuroarthropathy after simultaneous pancreas-kidney transplant.
        Transplantation. 2012; 94: 642-645
        • Rhen T
        • Cidlowski JA
        Antiinflammatory action of glucocorticoids—new mechanisms for old drugs.
        New Engl J Med. 2005; 353: 1711-1723
        • Adler RA
        • Curtis JR
        • Saag K
        • Weinstein RS
        Glucocorticoid-induced osteoporosis.
        in: Marcus R Osteoporosis. ed 3. Elsevier-Academic Press, San Diego2008
        • Kruger MJ
        • Nell TA
        Bone mineral density in people living with HIV: a narrative review of the literature.
        AIDS Res Ther. 2017; 14: 35
        • Dalla Via J
        • Daly RM
        • Fraser SF
        The effect of exercise on bone mineral density in adult cancer survivors: a systematic review and meta-analysis.
        Osteoporosis Int. 2017; 29: 287-303
        • Saad F
        • Adachi JD
        • Brown JP
        • Canning LA
        • Gelmon KA
        • Josse RG
        • Pritchard KI
        Cancer treatment-induced bone loss in breast and prostate cancer.
        J Clin Oncol. 2008; 26: 5465-5476
        • Grant PM
        • Kitch D
        • McComsey GA
        • Collier AC
        • Koletar SL
        • Erlandson KM
        • Yin MT
        • Bartali B
        • Ha B
        • Melbourne K
        • Brown TT
        Long-term bone mineral density changes in antiretroviral-treated HIV-infected individuals.
        J Infect Dis. 2016; 214: 607-611
        • Turner RT
        Skeletal response to alcohol.
        Alcoholism. 2000; 24: 1693-1701
        • Lauing KL
        • Roper PM
        • Nauer RK
        • Callaci JJ
        Acute alcohol exposure impairs fracture healing and deregulates β‐catenin signaling in the fracture callus.
        Alcoholism. 2012; 36: 2095-2103
        • Calori GM
        • Albisetti W
        • Agus A
        • Iori S
        • Tagliabue L
        Risk factors contributing to fracture non-unions.
        Injury. 2006; 38: 11-S18
        • Brown TT
        • Qaqish RB
        Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review.
        AIDS. 2006; 20: 2165-2174
        • Carda S
        • Cisari C
        • Invernizzi M
        • Bevilacqua M
        Osteoporosis after stroke: a review of the causes and potential treatments.
        Cerebrovasc Dis. 2009; 28: 191-200
        • Zheng L
        • Shen X
        • Ye J
        • Xie Y
        • Yan S
        Metformin alleviates hyperglycemia-induced apoptosis and differentiation suppression in osteoblasts through inhibiting the TLR4 signaling pathway.
        Life Sci. 2019; 216: 29-38
        • Marycz K
        • Tomaszewski KA
        • Kornicka K
        • Henry BM
        • Wroński S
        • Tarasiuk J
        • Maredziak M
        Metformin decreases reactive oxygen species, enhances osteogenic properties of adipose-derived multipotent mesenchymal stem cells in vitro, and increases bone density in vivo.
        Oxidative Med Cell Longevity. 2016; 2016: 1-19
        • Kalfas I
        Principles of bone healing.
        J Neurosurg. 2001; 10: 1-4