Advertisement
Research Article| Volume 61, ISSUE 2, P253-258, March 2022

Comparison of Fixation Techniques in Oblique and Biplanar Chevron Medial Malleolar Osteotomies; a Finite Element Analysis

      Abstract

      This study aimed to evaluate different fixation techniques and implants in oblique and biplanar chevron medial malleolar osteotomies using finite element analysis. Both oblique and biplanar chevron osteotomy models were created, and each osteotomy was fixed with 2 different screws (3.5 mm cortical screw and 4.0 mm malleolar screw) in 2 different configurations; (1) 2 perpendicular screws, and (2) an additional third transverse screw. Nine simulation scenarios were set up, including 8 osteotomy fixations and the intact ankle. A bodyweight of 810.44 N vertical loading was applied to simulate a single leg stand on a fixed ankle. Sliding, separation, frictional stress, contact pressures between the fragments were analyzed. Maximum sliding (58.347µm) was seen in oblique osteotomy fixed with 2 malleolar screws, and the minimum sliding (17.272 µm) was seen in chevron osteotomy fixed with 3 cortical screws. The maximum separation was seen in chevron osteotomy fixed with 2 malleolar screws, and the minimum separation was seen in oblique osteotomy fixed with 3 cortical screws. Maximum contact pressure and the frictional stress at the osteotomy plane were obtained in chevron osteotomy fixed with 3 cortical screws. The closest value to normal tibiotalar contact pressures was obtained in chevron osteotomy fixed with 3 cortical screws. This study revealed that cortical screws provided better stability compared to malleolar screws in each tested osteotomy and fixation configuration. The insertion of the third transverse screw decreased both sliding and separation. Biplanar chevron osteotomy fixed with 3 cortical screws was the most stable model.

      Level of Clinical Evidence

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Foot and Ankle Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Navid DO
        • Myerson MS.
        Approach alternatives for treatment of osteochondral lesions of the talus.
        Foot Ankle Clin. 2002; 7: 635-649
        • Koh JL
        • Kowalski A
        • Lautenschlager E.
        The effect of angled osteochondral grafting on contact pressure: a biomechanical study.
        Am J Sports Med. 2006; 34: 116-119
        • Muir D
        • Saltzman CL
        • Tochigi Y
        • Amendola N.
        Talar dome access for osteochondral lesions.
        Am J Sports Med. 2006; 34: 1457-1463
        • Alexander IJ
        • Watson JT.
        Step-cut osteotomy of the medial malleolus for exposure of the medial ankle joint space.
        Foot Ankle. 1991; 11: 242-243
        • Cohen BE
        • Anderson RB.
        Chevron-type transmalleolar osteotomy: an approach to medial talar dome lesions.
        Tech Foot Ankle Surg. 2002; 1: 158-162
        • Lee KB
        • Yang HK
        • Moon ES
        • Song EK.
        Modified step-cut medial malleolar osteotomy for osteochondral grafting of the talus.
        Foot Ankle Int. 2008; 29: 1107-1110
        • Mendicino RW
        • Lee MS
        • Grossman JP
        • Shromoff PJ.
        Oblique medial malleolar osteotomy for the management of talar dome lesions.
        J Foot Ankle Surg. 1998; 37: 516-523
        • Oznur A.
        Medial malleolar window approach for osteochondral lesions of the talus.
        Foot Ankle Int. 2001; 22: 841-842
        • O'Farrell TA
        • Costello BG.
        Osteochondritis dissecans of the talus. The late results of surgical treatment.
        J Bone Joint Surg Br. 1982; 64: 494-497
        • Ray RB
        • Coughlin Jr., EJ
        Osteochondritis dissecans of the talus.
        J Bone Joint Surg Am. 1947; 29: 697-706
        • Spatt JF
        • Frank NG
        • Fox IM.
        Transchondral fractures of the dome of the talus.
        J Foot Surg. 1986; 25: 68-72
        • Wallen EA
        • Fallat LM.
        Crescentic transmalleolar osteotomy for optimal exposure of the medial talar dome.
        J Foot Surg. 1989; 28: 389-394
        • Sripanich Y
        • Dekeyser G
        • Steadman J
        • Rungprai C
        • Haller J
        • Saltzman CL
        • Barg A.
        Limitations of accessibility of the talar dome with different open surgical approaches.
        Knee Surg Sports Traumatol Arthrosc. 2020; (https://doi:10.1007/s00167-020-06113-2[Epub ahead of print])
        • Bull PE
        • Berlet GC
        • Canini C
        • Hyer CF.
        Rate of malunion following bi-plane chevron medial malleolar osteotomy.
        Foot Ankle Int. 2016; 37: 620-626
        • Leumann A
        • Horisberger M
        • Buettner O
        • Mueller-Gerbl M
        • Valderrabano V.
        Medial malleolar osteotomy for the treatment of talar osteochondral lesions: anatomical and morbidity considerations.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 2133-2139
        • Lareau CR
        • Bariteau JT
        • Paller DJ
        • Koruprolu SC
        • DiGiovanni CW.
        Contribution of the medial malleolus to tibiotalar joint contact characteristics.
        Foot Ankle Spec. 2015; 8: 23-28
        • Kennedy JG
        • Murawski CD.
        The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: surgical technique.
        Cartilage. 2011; 2: 327-336
        • Lamb J
        • Murawski CD
        • Deyer TW
        • Kennedy JG.
        Chevron-type medial malleolar osteotomy: a functional, radiographic and quantitative T2-mapping MRI analysis.
        Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1283-1288
        • van Bergen CJ
        • Tuijthof GJ
        • Sierevelt IN
        • van Dijk CN.
        Direction of the oblique medial malleolar osteotomy for exposure of the talus.
        Arch Orthop Trauma Surg. 2011; 131: 893-901
        • Wang Q
        • Whittle M
        • Cunningham J
        • Kenwright J.
        Fibula and its ligaments in load transmission and ankle joint stability.
        Clin Orthop Relat Res. 1996; 330: 261-270
        • Hayden LR
        • Escaro S
        • Wilhite DR
        • Hanson RR
        • Jackson RL.
        A comparison of friction measurements of intact articular cartilage in contact with cartilage, glass, and metal.
        J Biomimetics Biomater Biomed Eng. 2019; 41: 23-35
        • Gao X
        • Fraulob M
        • Haïat G.
        Biomechanical behaviours of the bone-implant interface: a review.
        J R Soc Interface. 2019; 1620190259
        • Hayes WC
        • Perren SM.
        Plate-bone friction in the compression fixation of fractures.
        Clin Orthop Relat Res. 1972; 89: 236-240
        • Eberle S
        • Gerber C
        • von Oldenburg G
        • Högel F
        • Augat P.
        A biomechanical evaluation of orthopaedic implants for hip fractures by finite element analysis and in-vitro tests.
        Proc Inst Mech Eng H. 2010; 224: 1141-1152
        • Marvan J
        • Horak Z
        • Vilimek M
        • Horny L
        • Kachlik D
        • Baca V.
        Fixation of distal fibular fractures: a biomechanical study of plate fixation techniques.
        Acta Bioeng Biomech. 2017; 19: 33-39
        • Dong XN
        • Acuna RL
        • Luo Q
        • Wang X.
        Orientation dependence of progressive post-yield behavior of human cortical bone in compression.
        J Biomech. 2012; 45: 2829-2834
        • Wang X
        • Nyman JS
        • Dong X
        • Leng H
        • Reyes M.
        Fundamental biomechanics in bone tissue engineering.
        Synth Lect Tissue Eng. 2010; 2: 1-225
        • Kim SH
        • Chang SH
        • Jung HJ.
        The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues.
        Compos Struct. 2010; 92: 2109-2118
        • Klekiel T
        • Bedzinski R.
        Finite element analysis of large deformation of articular cartilage in upper ankle joint of occupant in military vehicles during explosion.
        Arch Metal Mater. 2015; 60: 2115-2121
        • Alonso-Rasgado T
        • Jimenez-Cruz D
        • Karski M.
        3-D computer modelling of malunited posterior malleolar fractures: effect of fragment size and offset on ankle stability, contact pressure and pattern.
        J Foot Ankle Res. 2017; 10: 13
        • Anderson DD
        • Goldsworthy JK
        • Li W
        • James RM
        • Tochigi Y
        • Brown TD
        Physical validation of a patient specific contact finite element model of the ankle.
        J Biomech. 2007; 40: 1662-1669
        • Zhu ZJ
        • Zhu Y
        • Liu JF
        • Wang YP
        • Chen G
        • Xu XY.
        Posterolateral ankle ligament injuries affect ankle stability: a finite element study.
        BMC Musculoskelet Disord. 2016; 17: 96
        • Oldani C
        • Dominguez A.
        Titanium as a biomaterial for implants.
        in: Fokter S Recent Advances in Arthroplasty. InTech, 2012: 149-162
        • Novitskaya E
        • Zin C
        • Chang N
        • Cory E
        • Chen P
        • D'Lima D
        • Sah RL
        • McKittrick J
        Creep of trabecular bone from the human proximal tibia.
        Mater Sci Eng C Mater Biol Appl. 2014; 40: 219-227
        • Viceconti M
        • Olsen S
        • Nolte LP
        • Burton K.
        Extracting clinically relevant data from finite element simulations.
        Clin Biomech. 2005; 20: 451-454
        • Ding M
        • Dalstra M
        • Danielsen CC
        • Kabel J
        • Hvid I
        • Linde F.
        Age variations in the properties of human tibial trabecular bone.
        J Bone Joint Surg Br. 1997; 79: 995-1002
        • Jensen NC
        • Hvid I
        • Krøner K.
        Strength pattern of cancellous bone at the ankle joint.
        Eng Med. 1988; 17: 71-76
        • Klekiel T
        • Wodzisławski J
        • BeRdzinski R.
        Modelling of damping properties of articular cartilage during impact load.
        Eng Trans. 2017; 65: 133-145
        • Morgan EF
        • Unnikrisnan GU
        • Hussein AI.
        Bone mechanical properties in healthy and diseased states.
        Annu Rev Biomed Eng. 2018; 20: 119-143
        • Park S
        • Lee S
        • Yoon J
        • Chae SW
        Finite element analysis of knee and ankle joint during gait based on motion analysis.
        Med Eng Phys. 2019; 63: 33-41
        • Sierpowska J
        • Hakulinen MA
        • Töyräs J
        • Day JS
        • Weinans H
        • Jurvelin JS
        • Lappalainen R.
        Prediction of mechanical properties of human trabecular bone by electrical measurements.
        Physiol Meas. 2005; 26: S119-S131
      1. Barbosa P, Bonnaire F, Kojima K. ORIF for Infrasyndesmotic, medial fracture with lateral fracture/avulsion. 2020. Available at:https://surgeryreference.aofoundation.org/orthopedic-trauma/adult-trauma/malleoli/infrasyndesmotic-medial-fracture-with-lateral-fracture-avulsion/orif. Accessed September 15, 2020.

        • Parker L
        • Garlick N
        • McCarthy I
        • Grechenig S
        • Grechenig W
        • Smitham P.
        Screw fixation of medial malleolar fractures: a cadaveric biomechanical study challenging the current AO philosophy.
        Bone Joint J. 2013; 95-B: 1662-1666
        • Pollard JD
        • Deyhim A
        • Rigby RB
        • Dau N
        • King C
        • Fallat LM
        • Bir C.
        Comparison of pullout strength between 3.5-mm fully threaded, bicortical screws and 4.0-mm partially threaded, cancellous screws in the fixation of medial malleolar fractures.
        J Foot Ankle Surg. 2010; 49: 248-252
        • Gaulrapp H
        • Hagena FW
        • Wasmer G.
        Postoperative rating of osteochondritis dissecans of the talus with special respect to medial malleolar osteotomy.
        Z Orthop Ihre Grenzgeb. 1996; 134: 346-353
        • Granata JD
        • DeCarbo WT
        • Hyer CF
        • Granata AM
        • Berlet GC
        • Stansbury E.
        Exposure of the medial talar dome: bi-plane chevron medial malleolus osteotomy.
        Foot Ankle Spec. 2013; 6: 12-14
        • Cheung JTM
        • Zhang M.
        A 3-dimensional finite element model of the human foot and ankle for insole design.
        Arch Phys Med Rehabil. 2005; 86: 353-358