Advertisement
Research Article| Volume 62, ISSUE 1, P107-114, January 2023

Download started.

Ok

Biomechanical Analysis of Tibiofibular Syndesmosis Injury Fixation Methods: A Finite Element Analysis

      Abstract

      The optimal treatment strategy after syndesmotic injuries is still controversial. In our study, we aimed to evaluate ideal fixation method in syndesmotic injury by using finite element analysis method. A 3D SolidWorks model file was created by taking computed tomography (CT) images of the area from the right foot base to the knee joint level of a healthy adult male. The intact model, injury model, and 8 different fixation models were created that 3.5 mm screw and suture-button were used in. The models were compared in terms of lateral fibular translation, posterior fibular translation and external rotation of fibula compared to tibia and stress values occurred on screws and suture-buttons. In the hybrid-1 model, lateral fibular translation and external fibular rotation values were obtained as close to the intact model. Von Mises stresses occurred in the screw (435.7 MPa) and suture-button (424.7 MPa) that used in hybrid-1 model was more than single screw at 4 cm model (316.8 MPa) and single suture-button at 2 cm model (160.7 MPa). In the Hybrid-1 model, the screw compensates for posterior fibular translation and external fibular rotation, while the suture-button compensates for lateral fibular translation. Also, the effect of the distal suture-button preventing diastasis in case of proximal screw failure, it was concluded that the hybrid-1 model can be used as a good treatment alternative in the surgical treatment of distal tibiofibular syndesmotic injuries.

      Level of Clinical Evidence

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Foot and Ankle Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lin CF
        • Gross ML
        • Weinhold P.
        Ankle syndesmosis injuries: anatomy, biomechanics, mechanism of injury, and clinical guidelines for diagnosis and intervention.
        J Orthop Sports Phys Ther. 2006; 36: 372-384
        • Clanton TO
        • Paul P.
        Syndesmosis injuries in athletes.
        Foot Ankle Clin. 2002; 7: 529-549
        • Mak MF
        • Gartner L
        • Pearce CJ.
        Management of syndesmosis injuries in the elite athlete.
        Foot Ankle Clin. 2013; 18: 195-214
        • Waterman BR
        • Belmont Jr., PJ
        • Cameron KL
        • Svoboda SJ
        • Alitz CJ
        • Owens BD
        Risk factors for syndesmotic and medial ankle sprain: role of sex, sport, and level of competition.
        Am J Sports Med. 2011; 39: 992-998
        • Press CM
        • Gupta A
        • Hutchinson MR.
        Management of ankle syndesmosis injuries in the athlete.
        Curr Sports Med Rep. 2009; 8: 228-233
        • Dattani R
        • Patnaik S
        • Kantak A
        • Srikanth B
        • Selvan TP.
        Injuries to the tibiofibular syndesmosis.
        J Bone Joint Surg Br. 2008; 90: 405-410
        • Høiness P
        • Strømsøe K.
        Tricortical versus quadricortical syndesmosis fixation in ankle fractures: a prospective, randomized study comparing two methods of syndesmosis fixation.
        J Orthop Trauma. 2004; 18: 331-337
        • Gardner MJ
        • Demetrakopoulos D
        • Briggs SM
        • Helfet DL
        • Lorich DG.
        Malreduction of the tibiofibular syndesmosis in ankle fractures.
        Foot Ankle Int. 2006; 27: 788-792
        • Stenquist DS
        • Ye MY
        • Kwon JY.
        Acute and chronic syndesmotic instability: role of surgical stabilization.
        Clin Sports Med. 2020; 39: 745-771
        • Coetzee JC
        • Ebeling P
        Treatment of syndesmosis disruptions with tightrope fixation.
        Techniques in Foot & Ankle Surgery. 2008; 7: 196-202
        • Kortekangas T
        • Savola O
        • Flinkkilä T
        • Lepojärvi S
        • Nortunen S
        • Ohtonen P
        • Katisko J
        • Pakarinen H
        A prospective randomised study comparing TightRope and syndesmotic screw fixation for accuracy and maintenance of syndesmotic reduction assessed with bilateral computed tomography.
        Injury. 2015; 46: 1119-1126
        • Laflamme M
        • Belzile EL
        • Bédard L
        • van den Bekerom MP
        • Glazebrook M
        • Pelet S.
        A prospective randomized multicenter trial comparing clinical outcomes of patients treated surgically with a static or dynamic implant for acute ankle syndesmosis rupture.
        J Orthop Trauma. 2015; 29: 216-223
        • Xu G
        • Chen W
        • Zhang Q
        • Wang J
        • Su Y
        • Zhang Y.
        Flexible fixation of syndesmotic diastasis using the assembled bolt-tightrope system.
        Scand J Trauma Resuscitat Emerg Med. 2013; 21: 71
        • Clanton TO
        • Whitlow SR
        • Williams BT
        • Liechti DJ
        • Backus JD
        • Dornan GJ
        • Saroki AJ
        • Turnbull TL
        • LaPrade RF
        Biomechanical comparison of 3 current ankle syndesmosis repair techniques.
        Foot Ankle Int. 2017; 38: 200-207
        • Ebramzadeh E
        • Knutsen AR
        • Sangiorgio SN
        • Brambila M
        • Harris TG.
        Biomechanical comparison of syndesmotic injury fixation methods using a cadaveric model.
        Foot Ankle Int. 2013; 34: 1710-1717
        • Cheung JT
        • Zhang M
        • Leung AK
        • Fan YB.
        Three-dimensional finite element analysis of the foot during standing—a material sensitivity study.
        J Biomech. 2005; 38: 1045-1054
        • García-Aznar JM
        • Kuiper JH
        • Gómez-Benito MJ
        • Doblaré M
        • Richardson JB.
        Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth.
        J Biomech. 2007; 40: 1467-1476
        • Stolk J
        • Janssen D
        • Huiskes R
        • Verdonschot N.
        Finite element-based preclinical testing of cemented total hip implants.
        Clin Orthop Relat Res. 2007; 456: 138-147
        • Sobotta J.
        Atlas and Textbook of Human Anatomy v. 3, 1907.
        WB Saunders Company, 1907
        • Williams BT
        • Ahrberg AB
        • Goldsmith MT
        • Campbell KJ
        • Shirley L
        • Wijdicks CA
        • LaPrade RF
        • Clanton TO
        Ankle syndesmosis: a qualitative and quantitative anatomic analysis.
        Am J Sports Med. 2015; 43: 88-97
        • Campbell KJ
        • Michalski MP
        • Wilson KJ
        • Goldsmith MT
        • Wijdicks CA
        • LaPrade RF
        • Clanton TO
        The ligament anatomy of the deltoid complex of the ankle: a qualitative and quantitative anatomical study.
        J Bone Joint Surg Am. 2014; 96: e62
        • Golanó P
        • Vega J
        • de Leeuw PA
        • Malagelada F
        • Manzanares MC
        • Götzens V
        • van Dijk CN
        Anatomy of the ankle ligaments: a pictorial essay.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 557-569
        • Clanton TO
        • Campbell KJ
        • Wilson KJ
        • Michalski MP
        • Goldsmith MT
        • Wijdicks CA
        • LaPrade RF
        Qualitative and quantitative anatomic investigation of the lateral ankle ligaments for surgical reconstruction procedures.
        J Bone Joint Surg Am. 2014; 96: e98
        • Lilyquist M
        • Shaw A
        • Latz K
        • Bogener J
        • Wentz B.
        Cadaveric analysis of the distal tibiofibular syndesmosis.
        Foot Ankle Int. 2016; 37: 882-890
        • Wenny R
        • Duscher D
        • Meytap E
        • Weninger P
        • Hirtler L.
        Dimensions and attachments of the ankle ligaments: evaluation for ligament reconstruction.
        Anat Sci Int. 2015; 90: 161-171
        • Attarian DE
        • McCrackin HJ
        • DeVito DP
        • McElhaney JH
        • Garrett Jr., WE
        Biomechanical characteristics of human ankle ligaments.
        Foot Ankle. 1985; 6: 54-58
        • Pfaeffle HJ
        • Tomaino MM
        • Grewal R
        • Xu J
        • Boardman ND
        • Woo SL
        • Herndon JH
        Tensile properties of the interosseous membrane of the human forearm.
        J Orthop Res. 1996; 14: 842-845
        • Beumer A
        • van Hemert WL
        • Swierstra BA
        • Jasper LE
        • Belkoff SM.
        A biomechanical evaluation of the tibiofibular and tibiotalar ligaments of the ankle.
        Foot Ankle Int. 2003; 24: 426-429
        • Marchetti DC
        • Moatshe G
        • Phelps BM
        • Dahl KD
        • Ferrari MB
        • Chahla J
        • Turnbull TL
        • LaPrade RF
        The proximal tibiofibular joint: a biomechanical analysis of the anterior and posterior ligamentous complexes.
        Am J Sports Med. 2017; 45: 1888-1892
        • Haraguchi N
        • Armiger RS
        • Myerson MS
        • Campbell JT
        • Chao EY.
        Prediction of three-dimensional contact stress and ligament tension in the ankle during stance determined from computational modeling.
        Foot Ankle Int. 2009; 30: 177-185
        • Walke W
        • Paszenda Z
        • Kaczmarek M
        Biomechanical analysis of tibia – double threaded screw fixation.
        Archives of Materials Science and Engineering. 2008; 30: 41-44
        • Erkmen E
        • Simşek B
        • Yücel E
        • Kurt A.
        Three-dimensional finite element analysis used to compare methods of fixation after sagittal split ramus osteotomy: setback surgery-posterior loading.
        Br J Oral Maxillofac Surg. 2005; 43: 97-104
        • Gray HA
        • Taddei F
        • Zavatsky AB
        • Cristofolini L
        • Gill HS.
        Experimental validation of a finite element model of a human cadaveric tibia.
        J Biomech Eng. 2008; 130031016
        • Sumanont S
        • Nopamassiri S
        • Boonrod A
        • Apiwatanakul P
        • Boonrod A
        • Phornphutkul C.
        Acromioclavicular joint dislocation: a Dog Bone button fixation alone versus Dog Bone button fixation augmented with acromioclavicular repair—a finite element analysis study.
        Eur J Orthop Surg Traumatol. 2018; 28: 1095-1101
        • Gerber JP
        • Williams GN
        • Scoville CR
        • Arciero RA
        • Taylor DC.
        Persistent disability associated with ankle sprains: a prospective examination of an athletic population.
        Foot Ankle Int. 1998; 19: 653-660
        • Edwards Jr., GS
        • DeLee JC
        Ankle diastasis without fracture.
        Foot Ankle. 1984; 4: 305-312
        • Sikka RS
        • Fetzer GB
        • Sugarman E
        • Wright RW
        • Fritts H
        • Boyd JL
        • Fischer DA
        Correlating MRI findings with disability in syndesmotic sprains of NFL players.
        Foot Ankle Int. 2012; 33: 371-378
        • Marymont JV
        • Lynch MA
        • Henning CE.
        Acute ligamentous diastasis of the ankle without fracture. Evaluation by radionuclide imaging.
        Am J Sports Med. 1986; 14: 407-409
        • Porter DA
        • May BD
        • Berney T.
        Functional outcome after operative treatment for ankle fractures in young athletes: a retrospective case series.
        Foot Ankle Int. 2008; 29: 887-894
        • Chun DI
        • Cho JH
        • Min TH
        • Park SY
        • Kim KH
        • Kim JH
        • Won SH
        Diagnostic accuracy of radiologic methods for ankle syndesmosis injury: a systematic review and meta-analysis.
        J Clin Med. 2019; 8: 968
        • Hahn DM
        • Colton CL.
        Malleolar fractures.
        AO Principles of Fracture Management. Thieme, New York2000: 559-581
        • Whittle AP.
        Fractures of the lower extremity.
        (editor)in: Canale ST Campbell's Operative Orthopaedics. 39 ed. Mosby, St. Louis, MO1998: 2046-2048
        • Schepers T
        • van Zuuren WJ
        • van den Bekerom MP
        • Vogels LM
        • van Lieshout EM.
        The management of acute distal tibio-fibular syndesmotic injuries: results of a nationwide survey.
        Injury. 2012; 43: 1718-1723
        • McBryde A
        • Chiasson B
        • Wilhelm A
        • Donovan F
        • Ray T
        • Bacilla P.
        Syndesmotic screw placement: a biomechanical analysis.
        Foot Ankle Int. 1997; 18: 262-266
        • Verim O
        • Er MS
        • Altinel L
        • Tasgetiren S.
        Biomechanical evaluation of syndesmotic screw position: a finite-element analysis.
        J Orthop Trauma. 2014; 28: 210-215
        • Beumer A
        • Campo MM
        • Niesing R
        • Day J
        • Kleinrensink GJ
        • Swierstra BA.
        Screw fixation of the syndesmosis: a cadaver model comparing stainless steel and titanium screws and three and four cortical fixation.
        Injury. 2005; 36: 60-64
        • Nousiainen MT
        • McConnell AJ
        • Zdero R
        • McKee MD
        • Bhandari M
        • Schemitsch EH.
        The influence of the number of cortices of screw purchase and ankle position in Weber C ankle fracture fixation.
        J Orthop Trauma. 2008; 22: 473-478
        • Markolf KL
        • Jackson SR
        • McAllister DR.
        Syndesmosis fixation using dual 3.5 mm and 4.5 mm screws with tricortical and quadricortical purchase: a biomechanical study.
        Foot Ankle Int. 2013; 34: 734-739
        • Johnson F
        • Scarrow P
        • Waugh W.
        Assessment of loads in the knee joint.
        Med Biol Eng Comput. 1981; 19: 237-243
        • Xenos JS
        • Hopkinson WJ
        • Mulligan ME
        • Olson EJ
        • Popovic NA.
        The tibiofibular syndesmosis. Evaluation of the ligamentous structures, methods of fixation, and radiographic assessment.
        J Bone Joint Surg Am. 1995; 77: 847-856
        • Thornes B
        • Walsh A
        • Hislop M
        • Murray P
        • O'Brien M
        Suture-endobutton fixation of ankle tibio-fibular diastasis: a cadaver study.
        Foot Ankle Int. 2003; 24: 142-146
        • Forsythe K
        • Freedman KB
        • Stover MD
        • Patwardhan AG.
        Comparison of a novel FiberWire-button construct versus metallic screw fixation in a syndesmotic injury model.
        Foot Ankle Int. 2008; 29: 49-54
        • LaMothe JM
        • Baxter JR
        • Murphy C
        • Gilbert S
        • DeSandis B
        • Drakos MC
        Three-dimensional analysis of fibular motion after fixation of syndesmotic injuries with a screw or suture-button construct.
        Foot Ankle Int. 2016; 37: 1350-1356
        • Patel NK
        • Chan C
        • Murphy CI
        • Debski RE
        • Musahl V
        • Hogan MV.
        Hybrid fixation restores tibiofibular kinematics for early weightbearing after syndesmotic injury.
        Orthop J Sports Med. 2020; 82325967120946744https://doi.org/10.1177/2325967120946744
        • Kim GB
        • Park CH.
        Hybrid fixation for Danis-Weber type C fractures with syndesmosis injury.
        Foot Ankle Int. 2021; 42: 137-144